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D €) | INTRODUCTION

Background

Signal degradation is ubiquitous

Computational restoration of degraded signal has been investigated for many years.

Different restoration tasks have various objectives.
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Distortion

Signal fidelity metrics that evaluate how similar is the restored signal to the “original” signal.
« Image denoising---------------------- recover the noise-free image

« Compression artifact removal-------- recover the uncompressed image

All the full-reference quality metrics, such as MSE, SSIM and VGG feature loss

Distortion := E[A(X, X )]




D €) | INTRODUCTION

Perception

Perceptual naturalness metrics that evaluate how “natural” is the restored signal with respect to
human perception.
« Image super-resolution--------------- produce image that looks like having high-resolution

« Compression artifact removal-------- generate a complete image that looks natural

User study (real-vs.-fake, etc.) and no-reference quality assessment methods.

propo?&'gnal to

Perceptual Difference := d(px, p X)
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Classification

Semantic quality metrics that evaluate how “useful” is the restored signal in the sense that it better
serves for the following semantic-related analyses.

Some practical cases:

« Blurred car license plates------------- image deblurring

« Image taken at night ----------------- image contrast enhancement
Only a few studies.

We can use a pre-trained classifier to measure this quality.
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Contribution

Different restoration tasks have various objectives:

« Signal fidelity -------------------------- Distortion
« Perceptual naturalness ---------------- Perception
« Semantic quality ----------------------- Classification

The Classification-Distortion-Perception (CPD) Tradeoff.
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px(x;) = N’i =1,2,..,N

Consider the process: X — Y — X

. X denotes the ideal “original” signal with the probability mass function X ()
Y denotes the degraded signal, and X denotes the restored signal.

The degradation model and the restoration method can be denoted by conditional mass
function P(¥|x) and p(&|vy) respectively.

Thus, thereis (1) = 37 p(ylz)px (z)
reX

P (@) =D p@Elypy () =D > pElyp(ylz)px ()

yey (7
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Assume each sample of the original signal X belongs to one of two classes: W {orW?) .

- The priori probabilities: P, P> =1 — P

« The probability mass functions: px1(x)andp xo(x)

There are:

pyi(y)
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eX
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pylz)pxi(z), i = 1,2

p(z|y)pyi(y)

<
<

> p(Ely)pyle)pxi(x), i

X

1,2

px(x)|= Pipx1(z) + Popxo(z)
py (W)= Pipy1(y) + Popyo(y)
P (2)|= Pip () + Pop o (2)
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« Xfollows Py = 0.7, P, = 0.3, pxi1(x) = N(=1,1), pxa(z) = N(1,1)

» This signal is corrupted by additive white Gaussian noiseY = X + N, where N ~ A/(0, 1).

« The denoising method is linear: X = aY where ¢ is an adjustable parameter.

Cy is the optimal classifier for X.

em
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. o wy, ifteR
Given a classifier c(t) = c(t|R) = ., there are 4 — 0.26
wy, otherwise —SE
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> Definition The classification-distortion-perception (CDP) function is

C(D,P) = Phin (X |eo), subject to E[A(X, X)] < D,d(px,ps) < P
Xy

where, cg = c(-|R0) is a predefined binary classifier.
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» Theoreml Considering the CDP function, if d(+, q)is convex inq, then C'(D, P) is:
1. monotonically non-increasing
2. convex inDand P.

» Discussion:
« The tradeoff indicates that distortion, perceptual difference, and classification error rate
cannot be made all minimal simultaneously.

« The convexity of C'(D, P)implies the tradeoff is stronger at the low distortion or low
perception ranges. In these ranges, any small improvement in distortion/perception achieved
by a restoration algorithm, must be accompanied by a large loss of classification accuracy.
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» We did five group of experiments using different configurations.

Dataset Task Classifier

Exp-1 MNIST | Denoising | Logistic
Exp-2 | MNIST | Denoising | CNN-1
Exp-3 | MNIST | Denoising | CNN-2
Exp-4 | MNIST SR CNN-1
Exp-5 | CIFAR-10 SR CNN-2’

» We train the restoration network with the following loss:

Edenoz’ser = aeMSE -+ /Bgadv g ’YEC'E

« The first term is MSE loss to represent distortion.
« The second term is an adversarial loss, minimizing which is to ensure perceptual quality.
« The third term is cross entropy, corresponding to classification error rate.
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Wasserstein distance

When C is sufficiently large, there is a tradeoff between P and D.

Error Rate
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Once C is smaller, the P-D curve elevates, indicating that better classification performance comes
at the cost of higher distortion and/or worse perceptual quality.
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We can observe the relations of C-P and C-D and all of them are convex as the theorem forecasts.
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Conclusion

v Regardless of the restoration algorithm, the classification error rate on the restored
signal evaluated by a predefined classifier cannot be made minimal along with the
distortion and perceptual difference.

v The CDP function is convex, indicating that when the error rate is already low, any

improvement of classification performance comes at the cost of higher distortion and

worse perceptual quality.
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How to measure perception in experiment?

Here we adopt the Wasserstein GAN and the adversarial loss £adv is proportional to the
Wasserstein distance dyw (px,py)

Note that in the Wasserstein GAN, the discriminator loss is an estimate of the Wasserstein distance.

Thus it can be used to assess the perceptual quality of the restored images quantitatively.
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What about retain the classifier?

Theorem2 Let the process of X — Y be denoted byPy|X, which is characterized by a conditional
mass function p(y|x), then there is€y = €x.

€y = €Xif and only if p(y|)satisfies: Vo, € RT, Voo € R™, Yy, p(ylz1)p(ylas) =0,
whereR" = {z|Pipx1(z) > Papx2(2)} and R~ = {z[Pipx1(z) < Popxa(2)}-




