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using image-to-image translation.

>\Visual Performance: Our method could generate high-frequency detalls
with the least artifacts on synthetic and real data.

[0 However, it is still difficult to train an
iIdeal degraded LR image generator to
perfectly mimic real images and real-
world SR remains a challenging pro-
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blem so far. In this paper we re- cyc
consider the unpaired real-world SR
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tation perspective.

The framework can be divided into two main parts: (&) feature distribution ahgnment

>Contribution (b) feature domain regularization

[0 We propose a novel unpaired SR
training framework based on feature
distribution alignment.
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~ Visual results on synthetic image
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(a) Feature Distribution Alignment

O Feature alignment loss
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[0 We introduce several losses to not
only align feature space better but
also preserve image detalls for the

O Target LR restoration loss 0O Target degradation style loss

SR taSk ﬁ?"ES(E? Gt) — th - $t—>t|l1 9,1;1391;; Lsty(E.Gt) =Er _s(p) [(Dt(Gt(fs)) - 1)2] Xt Ji : ” G, _x,l’:_)t Bicubic Kern]e)llé}il\ll\ll\-ll;SSR ESRGAN-FS SRResCGAN Impressionism Ours
_ _ O Feature identity loss o b e S0 £ (o0
[ Extensive experiments on three g min Loty(Dr) = Ep () |(DHGlfo) = 07| g fow ot S R e
. L(E,Gy) = oD, \ o 0~ ]
challenging datasets show that our v FEyy ) [(Dilar) = 1] aiae D x,
proposed method has advantages O Cycle loss (b) Feature Domain Regularization

'CC’yC(E:' Gt,GsRr) = ||ys

O Full objective
Etrain — ’\a.Eign‘Ca.Zign(E) + )\?"EC‘C?"EC(Ea GSR) + A?"ES'C?"ES(Ea Gt) + Astyﬁsty(Ea Gt) + Ag’dt‘cidt(Er Gt) + /\cycﬁcyc(Ea Gta GSR)

— Ys—t—s|] 1+C1fﬁf_ga.(y.51 Ys—st—s)+BLadv(Yss Ys—t—s)

over the existing unpaired SR training
solutions.
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