Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective Wei Wang, Haochen Zhang, Zehuan Yuan, Changhu Wang

INTRODUCTION

➤ Motivation

- Most existing convolution neural network based super-resolution (SR) methods generate their paired training dataset by simply interpolating high-resolution (HR) images to their low-resolution (LR) version or "real" LR artificially generating counterparts from real HR images using image-to-image translation.
- However, it is still difficult to train an ideal degraded LR image generator to perfectly mimic real images and realworld SR remains a challenging problem so far. In this paper we reconsider the unpaired real-world SR from a feature-level domain adaptation perspective.

≻Contribution

- We propose a novel unpaired SR training framework based on feature distribution alignment.
- We introduce several losses to not only align feature space better but also preserve image details for the SR task.
- Extensive experiments on three challenging datasets show that our proposed method has advantages over the existing unpaired SR training solutions.

≻Framework

respectively.

SR Reconstruction loss $\mathcal{L}_{rec}(E, G_{SR})$ Feature alignation $\min_{Q_{-}} \mathcal{L}_{align}(E) = \mathbb{E}_{x_{t'}}$ $+\mathbb{E}_{r}$

- Target LR $\mathcal{L}_{res}(E,G_t)$
- Feature ide

 $\mathcal{L}_{idt}(E,G_t)$

- Cycle loss $\mathcal{L}_{cyc}(E, G_t, \phi)$
- Full objective

PROPOSED METHOD

E means three copies of a same encoder and G_t , G_{SR} represent two different decoders. x_t and x_s are input LR images from target and source domain respectively, and f_t , f_s are corresponding feature maps. As the arrows in different colors imply, $x_{t \to t}$ is an image restored from feature f_t which has the same contents and degradation with x_t . $x_{s \to t}$ is generated from feature f_s with contents of x_s but degradation of x_t . Then $x_{s \to t}$ is fed into encoder E to extract feature \tilde{f}_s . Finally, the super-resolved images $y_{s \to t \to s}$ and $y_{s \to s}$ is generated from feature maps \tilde{f}_s and f_s

(a) feature distribution alignment The framework can be divided into two main parts: (b) feature domain regularization

$$\begin{aligned} \|y_{s} - y_{s \to s}\|_{1} + \alpha \mathcal{L}_{fea}(y_{s}, y_{s \to s}) + \beta \mathcal{L}_{adv}(y_{s}, y_{s \to s}) \\ \text{gnment loss} \\ & t_{\tau \to \mathcal{T}(x)} \left[(D_{f}(E(x_{t})) - 0.5)^{2} \right] \underset{\theta_{D_{f}}}{\min} \mathcal{L}_{align}(D_{f}) = \mathbb{E}_{x_{t} \to \mathcal{T}(x)} \left[(D_{f}(E(x_{t})) - 0)^{2} \right] \\ & + \mathbb{E}_{x_{s} \sim \mathcal{S}(x)} \left[(D_{f}(E(x_{s})) - 0.5)^{2} \right] \\ & + \mathbb{E}_{x_{s} \sim \mathcal{S}(x)} \left[(D_{f}(E(x_{s})) - 1)^{2} \right] \\ \text{restoration loss} \\ = \|x_{t} - x_{t \to t}\|_{1} \\ & \underset{\theta_{E}, \theta_{G_{t}}}{\min} \mathcal{L}_{sty}(E, G_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(G_{t}(f_{s})) - 1)^{2} \right] \\ \text{x}_{t} \to \mathbb{E} \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(D_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(G_{t}(f_{s})) - 0)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(D_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(G_{t}(f_{s})) - 0)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(D_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(G_{t}(f_{s})) - 0)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(D_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(G_{t}(f_{s})) - 0)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(D_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(x_{t}) - 1)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(D_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(x_{t}) - 1)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(D_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(x_{t}) - 1)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(D_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(x_{t}) - 1)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(D_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(x_{t}) - 1)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(D_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(x_{t}) - 1)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(D_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(x_{t}) - 1)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(X_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(x_{t}) - 1)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(X_{t}) = \mathbb{E}_{f_{s} \sim \mathcal{S}(f)} \left[(D_{t}(x_{t}) - 1)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(X_{t}) = \mathbb{E}_{f_{t} \sim \mathcal{S}(f)} \left[(D_{t}(x_{t}) - 1)^{2} \right] \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(X_{t}) = \mathbb{E}_{f_{t} \sim \mathcal{L}_{sty}(X_{t}) \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{sty}(X_{t}) = \mathbb{E}_{f_{t} \sim \mathcal{L}_{sty}(X_{t}) \\ & \underset{\theta_{D_{t}}}{\min} \mathcal{L}_{s$$

 $\mathcal{L}_{train} = \lambda_{align} \mathcal{L}_{align}(E) + \lambda_{rec} \mathcal{L}_{rec}(E, G_{SR}) + \lambda_{res} \mathcal{L}_{res}(E, G_t) + \lambda_{sty} \mathcal{L}_{sty}(E, G_t) + \lambda_{idt} \mathcal{L}_{idt}(E, G_t) + \lambda_{cyc} \mathcal{L}_{cyc}(E, G_t, G_{SR})$

EXPERIMENTAL RESULTS

bution Alignment

ain Regularization

➤Quantitative Comparisons

AIM 2019				NTIRE 2020			
Method	LPIPS↓	PSNR ↑	SSIM↑	Method	LPIPS↓	PSNR ↑	SSIM↑
†Bicubic	0.673	22.36	0.614	†Bicubic	0.632	25.52	0.671
<pre>†MadDeamon(Winner)</pre>	0.403	21.00	0.504	<pre>†Impressionism(Winner)</pre>	0.227	24.83	0.672
ZSSR[27]	0.639	22.21	0.603	ZSSR[27]	0.620	24.93	0.642
KernelGAN[1]+ZSSR[27]	0.613	22.40	0.611	KernelGAN[1]+ZSSR[27]	0.598	25.34	0.661
DnCNN[41]+K.[1]+Z.[27]	0.607	22.40	0.614	DnCNN[41]+K.[1]+Z.[27]	0.438	25.84	0.722
DnCNN[41]+IKC[10]	0.614	22.26	0.596	DnCNN[41]+IKC[10]	0.384	26.50	0.748
*Maeda <i>et al</i> . [21]	0.454	22.88	0.661	SRResCGAN[35]	0.335	25.05	0.676
DASR[38]	0.346	21.79	0.577				
Ours	0.340	22.60	0.622	Ours	0.252	25.40	0.707

with the least artifacts on synthetic and real data.

KernelGAN+ZSSR

Bicubic

DnCNN+ KernelGAN+ZSSR

Visual results on real phone image

Record a contraction of the second se

>Visual Performance: Our method could generate high-frequency details

Ours

Visual results on synthetic image

DnCNN+IKC

DASR

ESRGAN-FS

ESRGAN-FS

SRResCGAN

ESRGAN-FS

Impressionisn

Impressionism

Ours

